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A fast and realistic kinetic Monte Carlo method, aimed to reproduce pattern formation mechanism in epitaxial growth is 
presented. By several simple examples the applicability of the method is illustrated: dynamics and statistics of island growth 
and coalescence, impurity segregation and stacking fault dynamics. The method offers new perspectives for simulating 
hetero-epitaxial growth and the formation of several deposited layers in reasonable computational time, using normal PC 
type computers. 
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1. Introduction 
 
Kinetic (or resident time, or BKL-type) Monte Carlo 

methods are appropriate for simulating those dynamical 
phenomena where several processes with widely different 
time-scales are simultaneously present. In the case of 
epitaxial thin-film growth this is the case since: (i) atoms 
can be deposited on a crystalline surface with a given rate, 
(ii) atoms can diffuse on the surface (this diffusion being 
governed by different rates depending on the binding 
energy of the specific atom) and (iii) decohesion of 
adatoms from the surface are also possible (Fig. 1). In case 
of co-deposition of different type of atoms neighbouring 
atoms of different kind can exchange their positions (Fig. 
1) following complicated microscopic mechanisms. This 
exchange is also characterized by a specific rate.  

 
 

 
 

Fig. 1 Microscopic processes responsible for the dynamics of 
atoms during epitaxial growth. 

 
 

For simulating the result of these microscopic 
processes with widely different rates, a Monte Carlo 
method used for studying equilibrium properties of low 
temperature systems (the BKL Monte Carlo method [1]) 
was adapted and named as kinetic Monte Carlo method 
(for a review see [2]). The main idea is that in each 
simulation step one process is probabilistically selected 
(with probability proportional with its rate) and carried 
out. The time is updated non-uniformly, depending on the 
rates of all possible processes at that given moment.  

Generally, the deposition rate is fixed and calculated 
from the deposition speed (deposition flux) given as the 
number of new monolayers deposited in unit time (ML/s). 
The diffusion rate (rX→Y) of an atom is governed by the 
thermodynamic temperature (T) of the system and the 
potential barrier (ΔEX→Y) that the atom has to overcome 
between the initial (X) and the final (Y) position: 
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In expression (1) k is the Boltzmann factor and f0 is 

the attempt rate, which is roughly the vibration frequency 
of atoms in the crystal (f0≈1012 Hz). Since the value of the 
barrier is not straightforward to estimate (even if the pair-
potential between the atoms is known), several simplifying 
methods are used [3]. The simplest approach is to consider 
the potential barrier dependent only on the binding energy 
of the atom in the initial X state [4-7] or by applying the 
transition state theory [8]. A better, but computationally 
more costly approach is to consider a realistic pair-
potential between the atoms [9] and estimate the potential 
in several points between the initial and final state. 
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The embedded-atom method [10,11] offers another 

possibility for estimating the potential barrier in the 
hopping process. In such case the difference between the 
maximum and initial value will yield the potential barrier. 
Nowadays, with the advances in ab-initio methods, DFT 
calculations can be also successfully applied to estimate 
the value of the potential barrier [3,12,13].  

The decohesion rate is obtained either by fixing a 
phenomenological potential barrier Edec for this process or 
by calculating the more realistic potential barrier from first 
principles, as the binding energy of the chosen atom at the 
given site.    

Exchange between neighbouring and different type of 
atoms are microscopically realized through complex 
vacancy mechanisms. In KMC simulations however 
usually an oversimplified geometry is considered where 
many degrees of freedom for diffusion are not taken into 
account, so exchange possibilities are mostly blocked. The 
exchange rate is then usually postulated in form (1) by 
assigning a hypothetical Eex potential barrier for this 
process.   

Simulations are usually performed in a two-
dimensional geometry [4-7], the atoms being allowed to 
occupy the sites of a pre-defined lattice. By this approach 
one reproduces an idealized situation where a new layer is 
growing on a perfect crystalline substrate. The simplest 
possibility is to consider square lattice and the sites on the 
growing layer positioned exactly on the top of the atoms 
forming the substrate [4-7]. In such manner sometimes 
non-realistic three-dimensional cubic structures are 
simulated. However, approaches on more complex 
geometries are also possible. One can use lattices with 
different symmetries and different stacking sequences for 
positioning the atoms in the growing layer [2,3,12]. 
Simulations can be made more realistic by considering a 
second layer on the top of the simulated one so that 
interchanges between these two layers become possible. 
This allows the formation of additional defects and 
vacancies. 

Nowadays computationally costly off-lattice kinetic 
Monte Carlo methods [14,15] are also considered for the 
case when several types of atoms are simultaneously 
present and there is lattice constant or symmetry mismatch 
between the crystalline structures of the components. In 
such an approach the position of the atoms are computed 
from an energy minimization procedure and the dynamics 
of the system is realized with the kinetic Monte Carlo 
algorithm. The method is an optimal reconciliation 
between the realistic nature of the Molecular Dynamics 
simulations and the higher speed of the kinetic Monte 
Carlo approach. Although there are some interesting 
results obtained with this approach the method is still not 
usable for reasonably large system sizes and practically 
relevant evolution times in (2+1)D.  

2. The MC method implemented in the  
    present study 
 
The kinetic Monte Carlo method implemented by us 

has a small number of undetermined phenomenological 
parameters and several additional degrees of freedom for 
the diffusion of the atoms. In the mean-time, the speed of 
the algorithm remains practically the same as in the case of 
the generally used classical methods.  

Triangular lattice ((111) plane of fcc structure) is used 
as substrate (filled circles in Fig. 2). This leads to a more 
compact packing of the atoms than in the case of the 
square lattice. It is assumed that atoms are spheres. In such 
manner, there are two triangular sub-lattices (empty circles 
and crosses in fig. 2) on which the adatoms can be 
deposited, forming monolayer lattices of fcc or hcp 
crystalline phases. Due to geometric restrictions atoms in 
the growing layer cannot occupy neighbouring sites 
belonging to different sub-lattices.    

Considering a bulk fcc substrate, stacking fault 
develops at the interface of the substrate and a growing 
hcp monolayer island (Fig. 3). By this manner phase 
boundaries will also appear between growing islands of 
fcc and hcp types. This extra defect mechanism 
characteristic for this geometry facilitates the diffusion and 
interchange of atoms.  Diffusion of adatoms on the top of 
the first growing monolayer is also considered. These 
adatoms can also jump down on the substrate.  

 

 
 

Fig. 2  Geometry of the considered lattice. Filled circles 
represents the sites of the substrate, empty circles and 
crosses    represents    the    fcc    and   hcp   lattice  sites,  
      respectively, on which the new layer can growth 

 
 

For computing the potential-barrier that governs the 
surface diffusion of the atoms phenomenological pair-
potentials are used. The hopping barrier for the diffusion 
process is calculated from the binding energies of the 
atoms in the initial and final states. As a first trial Lenard–
Jones type pair-potentials were considered, although other 
accepted forms would probably lead to qualitatively 
similar results.  
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Fig. 3.Phase-boundaries that can be formed  
on  the triangular fcc surface. 

 
 

Assuming the lattice constant as length unit and 
Lenard-Jones type pair-potentials, the interaction potential 
between atoms of type W and Q separated with distance r 
can be written with one EWQ parameter: 

 

)21( 612 rr
EU WQWQ −=                          (3) 

 
The parameter EWQ determines the binding energy at 

the r=1 equilibrium distance. Interaction between atoms 
are taken into account up to s=3 lattice site distances. It is 
assumed that the hopping barrier from a site X to a site Y 
depends not only on the binding energy at site X, but also 
on the change in the binding energy. The following simple 
linear form for calculating the hopping barrier of an atom 
has been proposed by us previously [16]:   
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In equation (4) X

nE  ( Y
nE  ) is the total interaction 

energy (binding energy) of the atom at sites X (Y), 
respectively. α is a parameter between 0 and 1, whose 
value will be determined later. This form yields the good 
barrier for decohesion (- X

nE ) and reasonable values for 
the self-surface diffusion and edge-diffusion. In order to 
get positive barriers for each possible process α has to be 
bounded between 0.3 and 0.6. A simple exercise using 
Lenard-Jones type potentials on an fcc structure shows that 
the ratio of the energy barrier for self-surface diffusion and 
adsorption energy should be around 0.35.  It is immediate 
to realize that this ratio is exactly the value of α. 

The numbers of phenomenological parameters are 
thus quite reduced: WQE  the F deposition rate, the f0 
attempt frequency and the T thermodynamic temperature 
of the system. Systems with lattice sizes up to 500 x 500 
were easily simulated in a few days on normal PC type 
computers (Pentium 4, 3.4 GHz). As will be discussed in 
the next section, realistic dynamics and growth statistics 
was obtained.  

We will present in the following some qualitative 
results for illustrating the applicability of this simple 
method. As tests we study the dynamics of monolayer 

formation: island nucleation, growth, coalescence and 
phase-boundary movement.  

 
 
3. Island nucleation and growth  

 
We consider the deposition of A type atoms on a 

triangular surface formed by the same type of atoms. The 
parameter EAA  was fixed to  0.15 eV , we assumed 
f0=1012Hz, the value of F was considered between 0.1-10 
ML/s, temperature T was varied between 400-650 K and 
simulations on lattices up to sizes 512 X 512 was 
considered. We investigated the time-evolution of the 
system and qualitatively compared its statistics with 
experimental results.  On Fig. 4 a visual comparison 
between experimental and simulation results is given. 
Experimental results are from an in-situ transmission 
electron microscopy experiment performed for Indium 
deposition on amorphous Carbon membrane in the MFA-
KFKI (Budapest, Hungary) laboratories [17].  One has to 
be carefully while comparing the monolayer growth 
simulations with this experiment. In the experiment the 
islands are three-dimensional structures and not a simple 
monlayer! Islands are growing both perpendicularly on the 
plane and in the direction of the plane. One can expect 
thus only qualitative agreement. Simulation shown on Fig. 
4.was performed for T=400 K with F=10 ML/s.    

 

 
 

Fig.4. Visual comparison between (a) experimental and 
(b) simulated island-growth scenario. 

 
The time-evolution curve of the average island size is 

also in qualitative agreement with the experimental one. 
On Figure 5. the trend for the simulated and experimental 
data is compared. Experimental data is from the same in-
situ TEM experiment as the one presented on Fig. 4. Since 
experiments are for three-dimensional islands, one would 
expect in such case a less steep curve when the continuous 
layer forms. As it is observable on the figure the shape of 
the curves are quite similar, although the simulated curve 
is much steeper at the end. 
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Fig. 5 Experimental and simulated trend of the average island size as a function of time during the formation of a 
continuous covering layer. Simulations are for T=550 K  and F=10 ML/s deposition rate. 

 
 

For the same filling ratio of the monolayer one can 
follow up the average island number in a given surface 
area as a function of the temperatures. As temperature 
increases one will have less and less islands, since the 
surface-diffusion process is enhanced and island growth is 
favored.  Representing on logarithmic scale the average 
island number as a function of the inverse of the 
temperature the curve should follow the experimentally 
proved Arhenius-type behavior [18], i.e it should be a 
monotonically increasing function with a constantly 
decreasing slope.  On Fig. 6, considering two different 
filling ratios in the monolayer, we present simulation 
results. The curves have the right trend and are in 
qualitative agreement with the experimental results 
presented in [18].    

 
 

 
Fig. 6 Simulated Arhenius-like trend for the average 
number  of  islands in a given surface area. Simulations  
                    were performed with F=10 ML/s. 
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4. Evolution and annihilation of stacking- 
    faults and phase-boundaries on an fcc  
    (1,1,1)  surface 
 
Again, we consider the case when atoms are deposited 

with a fixed deposition rate (F=10ML/s) on a planar fcc 
(1,1,1) surface formed by the same type of atoms. 
Similarly with the previous case, monolayer domains of 
the two equivalent orientations but with different, fcc and 

hcp, sequences are nucleated and grown. It worst 
mentioning here, that although the fcc and hcp sites are 
geometrically equivalent the binding energy is slightly 
different, the fcc sites being energetically more stable. 
Formation, motion and annihilation of stacking faults 
related phase-boundaries appear and can be followed 
during simulation (Fig. 7). Some movies are also given on 
the home-page dedicated to this study [19].  

 

   
 
Fig.7. Characteristic time evolution and annihilation of stacking faults related phase-boundaries for the case when 
only A type of atoms are deposited. The pictures from left to right represent steps in the time-evolution. The F and H 
islands  correspond  to  fcc  and  hcp  stacking,  respectively.   Simulation  parameters  are:   EAA =0.15eV, T=650K,  
                                                                      F=10ML/s and f0=1012 Hz. 

 
 
5. Island coalescence 

 
The scenario for islands coalescence is also in 

qualitative agreement with the one observed in 
experiments. In simulations one can observe the realistic 

formation of the neck and the fast rounding of the resulting 
islands.  A simulation sequence in this sense is illustrated 
in Fig. 8. Movies made from simulation results are 
presented again on the home-page dedicated to this study 
[19]. 

 
 

 
 

Fig. 8. Simulated island coalescence scenario. Simulation parameters are: T=450 K and F= 0.1 ML/s. 
 
  

6. Conclusions 
 
By considering a simple monolayer growth 

phenomenon the applicability of a novel and fast kinetic 

Monte Carlo method was illustrated. The method has the 
advantage of incorporating many degrees of freedom for 
the surface diffusion of the atoms and uses hopping 
barriers calculated from realistic pair-potentials. Island 
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nucleation and growth, island coalescence, stacking faults 
and phase boundary motions are all realistic in such 
simulations and reproduces qualitatively well the 
experimental results. As shown in a recent study [18] the 
model works also well for the co-deposition of several 
types of atoms, being able to reproduce segregation 
patterns and structures formed during epitaxial growth. 
The model can be easily generalized for simulating the 
growth of several layers as well.  
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