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A novel kinetic Monte Carlo method for epitaxial

growth™
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A fast and realistic kinetic Monte Carlo method, aimed to reproduce pattern formation mechanism in epitaxial growth is
presented. By several simple examples the applicability of the method is illustrated: dynamics and statistics of island growth
and coalescence, impurity segregation and stacking fault dynamics. The method offers new perspectives for simulating
hetero-epitaxial growth and the formation of several deposited layers in reasonable computational time, using normal PC

type computers.
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1. Introduction

Kinetic (or resident time, or BKL-type) Monte Carlo
methods are appropriate for simulating those dynamical
phenomena where several processes with widely different
time-scales are simultaneously present. In the case of
epitaxial thin-film growth this is the case since: (i) atoms
can be deposited on a crystalline surface with a given rate,
(ii) atoms can diffuse on the surface (this diffusion being
governed by different rates depending on the binding
energy of the specific atom) and (iii) decohesion of
adatoms from the surface are also possible (Fig. 1). In case
of co-deposition of different type of atoms neighbouring
atoms of different kind can exchange their positions (Fig.
1) following complicated microscopic mechanisms. This
exchange is also characterized by a specific rate.
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Fig. 1 Microscopic processes responsible for the dynamics of
atoms during epitaxial growth.

For simulating the result of these microscopic
processes with widely different rates, a Monte Carlo
method used for studying equilibrium properties of low
temperature systems (the BKL Monte Carlo method [1])
was adapted and named as kinetic Monte Carlo method
(for a review see [2]). The main idea is that in each
simulation step one process is probabilistically selected
(with probability proportional with its rate) and carried
out. The time is updated non-uniformly, depending on the
rates of all possible processes at that given moment.

Generally, the deposition rate is fixed and calculated
from the deposition speed (deposition flux) given as the
number of new monolayers deposited in unit time (ML/s).
The diffusion rate (ry_y) of an atom is governed by the
thermodynamic temperature (7) of the system and the
potential barrier (4Ey_y) that the atom has to overcome
between the initial (X) and the final () position:

AE
Fyoy = Jo €xp(— —k)}_)y ) (1

In expression (1) k is the Boltzmann factor and f; is
the attempt rate, which is roughly the vibration frequency
of atoms in the crystal (f;=/0"* Hz). Since the value of the
barrier is not straightforward to estimate (even if the pair-
potential between the atoms is known), several simplifying
methods are used [3]. The simplest approach is to consider
the potential barrier dependent only on the binding energy
of the atom in the initial X state [4-7] or by applying the
transition state theory [8]. A better, but computationally
more costly approach is to consider a realistic pair-
potential between the atoms [9] and estimate the potential
in several points between the initial and final state.
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The embedded-atom method [10,11] offers another
possibility for estimating the potential barrier in the
hopping process. In such case the difference between the
maximum and initial value will yield the potential barrier.
Nowadays, with the advances in ab-initio methods, DFT
calculations can be also successfully applied to estimate
the value of the potential barrier [3,12,13].

The decohesion rate is obtained either by fixing a
phenomenological potential barrier E,,. for this process or
by calculating the more realistic potential barrier from first
principles, as the binding energy of the chosen atom at the
given site.

Exchange between neighbouring and different type of
atoms are microscopically realized through complex
vacancy mechanisms. In KMC simulations however
usually an oversimplified geometry is considered where
many degrees of freedom for diffusion are not taken into
account, so exchange possibilities are mostly blocked. The
exchange rate is then usually postulated in form (1) by
assigning a hypothetical E. potential barrier for this
process.

Simulations are usually performed in a two-
dimensional geometry [4-7], the atoms being allowed to
occupy the sites of a pre-defined lattice. By this approach
one reproduces an idealized situation where a new layer is
growing on a perfect crystalline substrate. The simplest
possibility is to consider square lattice and the sites on the
growing layer positioned exactly on the top of the atoms
forming the substrate [4-7]. In such manner sometimes
non-realistic three-dimensional cubic structures are
simulated. However, approaches on more complex
geometries are also possible. One can use lattices with
different symmetries and different stacking sequences for
positioning the atoms in the growing layer [2,3,12].
Simulations can be made more realistic by considering a
second layer on the top of the simulated one so that
interchanges between these two layers become possible.
This allows the formation of additional defects and
vacancies.

Nowadays computationally costly off-lattice kinetic
Monte Carlo methods [14,15] are also considered for the
case when several types of atoms are simultaneously
present and there is lattice constant or symmetry mismatch
between the crystalline structures of the components. In
such an approach the position of the atoms are computed
from an energy minimization procedure and the dynamics
of the system is realized with the kinetic Monte Carlo
algorithm. The method is an optimal reconciliation
between the realistic nature of the Molecular Dynamics
simulations and the higher speed of the kinetic Monte
Carlo approach. Although there are some interesting
results obtained with this approach the method is still not
usable for reasonably large system sizes and practically
relevant evolution times in (2+1)D.

2. The MC method implemented in the
present study

The kinetic Monte Carlo method implemented by us
has a small number of undetermined phenomenological
parameters and several additional degrees of freedom for
the diffusion of the atoms. In the mean-time, the speed of
the algorithm remains practically the same as in the case of
the generally used classical methods.

Triangular lattice ((111) plane of fcc structure) is used
as substrate (filled circles in Fig. 2). This leads to a more
compact packing of the atoms than in the case of the
square lattice. It is assumed that atoms are spheres. In such
manner, there are two triangular sub-lattices (empty circles
and crosses in fig. 2) on which the adatoms can be
deposited, forming monolayer lattices of fcc or hcp
crystalline phases. Due to geometric restrictions atoms in
the growing layer cannot occupy neighbouring sites
belonging to different sub-lattices.

Considering a bulk fcc substrate, stacking fault
develops at the interface of the substrate and a growing
hcp monolayer island (Fig. 3). By this manner phase
boundaries will also appear between growing islands of
fcc and hcp types. This extra defect mechanism
characteristic for this geometry facilitates the diffusion and
interchange of atoms. Diffusion of adatoms on the top of
the first growing monolayer is also considered. These
adatoms can also jump down on the substrate.
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Fig. 2 Geometry of the considered lattice. Filled circles

represents the sites of the substrate, empty circles and

crosses represents the fcc and hep lattice sites,
respectively, on which the new layer can growth

For computing the potential-barrier that governs the
surface diffusion of the atoms phenomenological pair-
potentials are used. The hopping barrier for the diffusion
process is calculated from the binding energies of the
atoms in the initial and final states. As a first trial Lenard—
Jones type pair-potentials were considered, although other
accepted forms would probably lead to qualitatively
similar results.
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Fig. 3.Phase-boundaries that can be formed
on the triangular fcc surface.

Assuming the lattice constant as length unit and
Lenard-Jones type pair-potentials, the interaction potential
between atoms of type W and Q separated with distance r
can be written with one Ey,, parameter:

1 2
UWQ = EWQ(FT_FT) (3)

The parameter Eyg determines the binding energy at
the =17 equilibrium distance. Interaction between atoms
are taken into account up to s=3 lattice site distances. It is
assumed that the hopping barrier from a site X to a site ¥
depends not only on the binding energy at site X, but also
on the change in the binding energy. The following simple
linear form for calculating the hopping barrier of an atom
has been proposed by us previously [16]:

AE, ,, =—aE; +(1-a)E, —E;) )

In equation (4) E :{ (E: ) is the total interaction
energy (binding energy) of the atom at sites X (Y),
respectively. o is a parameter between 0 and 1, whose
value will be determined later. This form yields the good
barrier for decohesion (- EnX ) and reasonable values for
the self-surface diffusion and edge-diffusion. In order to
get positive barriers for each possible process o has to be
bounded between 0.3 and 0.6. A simple exercise using
Lenard-Jones type potentials on an fcc structure shows that
the ratio of the energy barrier for self-surface diffusion and
adsorption energy should be around 0.35. It is immediate
to realize that this ratio is exactly the value of a.

The numbers of phenomenological parameters are
thus quite reduced: £}, the F deposition rate, the f,
attempt frequency and the 7 thermodynamic temperature
of the system. Systems with lattice sizes up to 500 x 500
were easily simulated in a few days on normal PC type
computers (Pentium 4, 3.4 GHz). As will be discussed in
the next section, realistic dynamics and growth statistics
was obtained.

We will present in the following some qualitative
results for illustrating the applicability of this simple
method. As tests we study the dynamics of monolayer

formation: island nucleation, growth, coalescence and
phase-boundary movement.

3. Island nucleation and growth

We consider the deposition of A type atoms on a
triangular surface formed by the same type of atoms. The
parameter E,y was fixed to 0.15 eV , we assumed
fo=10"Hz, the value of F was considered between 0./-10
ML/s, temperature T was varied between 400-650 K and
simulations on lattices up to sizes 512 X 512 was
considered. We investigated the time-evolution of the
system and qualitatively compared its statistics with
experimental results. On Fig. 4 a visual comparison
between experimental and simulation results is given.
Experimental results are from an in-situ transmission
electron microscopy experiment performed for Indium
deposition on amorphous Carbon membrane in the MFA-
KFKI (Budapest, Hungary) laboratories [17]. One has to
be carefully while comparing the monolayer growth
simulations with this experiment. In the experiment the
islands are three-dimensional structures and not a simple
monlayer! Islands are growing both perpendicularly on the
plane and in the direction of the plane. One can expect
thus only qualitative agreement. Simulation shown on Fig.
4.was performed for 7=400 K with F=10 ML/s.

0.175 ML

0.475 ML

Fig.4. Visual comparison between (a) experimental and
(b) simulated island-growth scenario.

The time-evolution curve of the average island size is
also in qualitative agreement with the experimental one.
On Figure 5. the trend for the simulated and experimental
data is compared. Experimental data is from the same in-
situ TEM experiment as the one presented on Fig. 4. Since
experiments are for three-dimensional islands, one would
expect in such case a less steep curve when the continuous
layer forms. As it is observable on the figure the shape of
the curves are quite similar, although the simulated curve
is much steeper at the end.
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Fig. 5 Experimental and simulated trend of the average island size as a function of time during the formation of a
continuous covering layer. Simulations are for T=550 K and F=10 ML/s deposition rate.

For the same filling ratio of the monolayer one can 940 L
follow up the average island number in a given surface ®—®05ML
area as a function of the temperatures. As temperature opp | W ®02ML

increases one will have less and less islands, since the
surface-diffusion process is enhanced and island growth is

favored. Representing on logarithmic scale the average E 2.00 r

island number as a function of the inverse of the E

temperature the curve should follow the experimentally 8 5a0
28

proved Arhenius-type behavior [18], i.e it should be a
monotonically increasing function with a constantly
decreasing slope. On Fig. 6, considering two different 8.60 -
filling ratios in the monolayer, we present simulation
results. The curves have the right trend and are in 540 ,

6 18 2 22 24 26 28

qualitative agreement with the experimental results 112 14 1
1000/T (1/K)

presented in [18].

Fig. 6 Simulated Arhenius-like trend for the average
number of islands in a given surface area. Simulations
were performed with F=10 ML/s.
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4. Evolution and annihilation of stacking-
faults and phase-boundaries on an fcc
(1,1,1) surface

Again, we consider the case when atoms are deposited
with a fixed deposition rate (F=10ML/s) on a planar fcc
(1,1,1) surface formed by the same type of atoms.
Similarly with the previous case, monolayer domains of
the two equivalent orientations but with different, fcc and

hcp, sequences are nucleated and grown. It worst
mentioning here, that although the fcc and hep sites are
geometrically equivalent the binding energy is slightly
different, the fcc sites being energetically more stable.
Formation, motion and annihilation of stacking faults
related phase-boundaries appear and can be followed
during simulation (Fig. 7). Some movies are also given on
the home-page dedicated to this study [19].

Fig.7. Characteristic time evolution and annihilation of stacking faults related phase-boundaries for the case when

only A type of atoms are deposited. The pictures from lefi to right represent steps in the time-evolution. The F and H

islands correspond to fcc and hep stacking, respectively. Simulation parameters are: E g4 =0.15¢V, T=650K,
F=10ML/s and fy=10" Hz.

5. Island coalescence

The scenario for islands coalescence is also in
qualitative agreement with the one observed in
experiments. In simulations one can observe the realistic

formation of the neck and the fast rounding of the resulting
islands. A simulation sequence in this sense is illustrated
in Fig. 8. Movies made from simulation results are
presented again on the home-page dedicated to this study
[19].

Fig. 8. Simulated island coalescence scenario. Simulation parameters are: T=450 K and F= 0.1 ML/s.

6. Conclusions

By considering a simple monolayer growth
phenomenon the applicability of a novel and fast kinetic

Monte Carlo method was illustrated. The method has the
advantage of incorporating many degrees of freedom for
the surface diffusion of the atoms and uses hopping
barriers calculated from realistic pair-potentials. Island
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nucleation and growth, island coalescence, stacking faults
and phase boundary motions are all realistic in such
simulations and reproduces qualitatively well the
experimental results. As shown in a recent study [18] the
model works also well for the co-deposition of several
types of atoms, being able to reproduce segregation
patterns and structures formed during epitaxial growth.
The model can be easily generalized for simulating the
growth of several layers as well.
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